Crypto
How Nation-States Will Use Bitcoin In The Power Projection Game
Published
2 years agoon
This is an opinion editorial by Jaime Gutierrez, a bitcoin financial strategist and founder of Bitcoin Embassy on YouTube.
This article is part of a series written by Jaime Gutierrez entitled “The Influence Of The U.S. In Central America Then And Today.”
The military, today, is not considered an important element of society by the public. Why should it? It represents bloodshed and fights that seem pointless and have caused society a lot of pain. Similarly, studying Bitcoin as a property defense system is a misunderstood part of this asset and one that is biased by our own beliefs. How are they connected? Because both use brute force and physical power to defend property.
As a Mexican-born citizen, I have always wondered why, given the abundance of natural resources like oil and lithium available in our country, Mexico hasn’t become a world economic leader. You might also have a similar point of view in your country of residence. Especially if you are in a developing nation in Latin America or Africa or if you live in a small country that has a lot of influence from superpowers like Russia, the U.S. or China.
Throughout history, one of the reasons a country or empire has become a hegemonic power has been through what Jason Lowery calls the power projection game, which means the kinetic brute physical force of the military. This is important because if a nation doesn’t project power properly, how can it defend its natural resources and its sovereignty from another nation? And more importantly, as individuals, how can we defend our property from being stolen or confiscated by a corrupt agent? Here is where the role of The State arises.
According to Robert Breedlove, the main purpose of a State is the defense and preservation of life, liberty, and property.
“Property is the mutually acknowledged, exclusive relationship between an asset owner and any particular asset. As a relationship rather than any particular item, the essence of all property is informational.”
“The right to life is the source of all rights — and the right to property is their own implementation. Without property rights, no other rights are possible. Since man has to sustain his life by his own effort, the man who has no right to the product of his effort has no means to sustain his life.” — Ayn Rand
If property means a list of “Who owns what?” and life is the source of all rights, then how can we defend ourselves from a tyrant or a person that wants to steal our property? We want to be assured that the product of our daily life efforts gained through sweat, tears and sacrificed time will be safe for ourselves and our bloodline.
“Reliably storing, updating and communicating information in this list is property’s native application. And the limitation of this has been the need to trust (and pay) an authority to maintain this list and prevent falsification or duplication of its records.” — Robert Breedlove
For centuries, this authority has been the government. The government is the entity that determines the rule of law in a community. It works through the federal courts and its three main powers — legislative, judicial and executive — to defend the property rights of its citizens. It needs the third one — an army — to guarantee compliance with these rules if the other powers fail in doing so.
“The purpose of projecting power via the Militia is to preserve zero-trust and egalitarian control over what are fundamentally trust-based and inegalitarian rules of law. Our rules-based order only works insofar as we can project power to preserve our access to our rules-based order. And, the only physical signature of ‘ownership’ is the power projected to preserve one’s access to property.” — Jason Lowery
When we look at history, the government has often ended up being the actor imposing new rules and thereby violating these same property rights. In the U.S. this right is protected from corruption by the Second Amendment, which allows the people to form militias to combat the government if it becomes a bad actor in society.
This concerns the protection of property rights within a self-organized state, but the same dynamics are true between states. And this is where international conflicts come from and where the importance of the military arises to defend their rule of law from outsiders.
Military development infrastructure.
“Whenever a consensus as to property rights between states could not be reached through political means, conflict erupts.” — Robert Breedlove, 2021
“We forget how the state of ownership and chain of custody of virtually everything with mass, particularly the mass we monetize, is written in blood, not ink. This is the tragedy of good power projection and deterrence. The better we get at it, the less often we are reminded about why we need it.” — Jason Lowery
Carl von Clausewitz, a Prussian general and military theorist of the 19th century stated: “War is merely the continuation of policy with other means.” So to understand the importance of the military having a hegemony we need to understand why wars happen.
As one of the most important classical strategic thinkers of history, he examined the nature of war and defined it with this trinity:
War is made of the same “blind natural forces” of “primordial violence” observed in nature.
It contains “the play of chance and probability” that rewards “creative spirits.”
It is a calculated instrument of national policy used to solve political disputes.
This means that the survival of the fittest, the creative spirits that are in the search beyond something greater than them and with a clear purpose to achieve it, are the ones that translated into governments and have become the superpowers that are influencing everything around them because they have become the best at projecting power.
“Moreover, winning this brute-force physical power game is not exclusively dependent on finding ways to amass larger quantities of power; it’s also about finding different strategies for projecting power in increasingly more creative ways.
And when we can’t trust the judge because we don’t respect their judgment, war gives nations access to an independent courtroom with a perfectly impartial judge who cannot be manipulated by emotion or corrupted by false interpretations. War is the judge of last resort, delivering incorruptible judgment and a very decisive ruling based on brute-force physical power.” — Jason Lowery
This is the judge in the rise and fall of civilizations and superpowers. And when new technology arises, the hegemony of the power that rejects it suffers the consequences and falls apart.
Think of the Middle Ages, and one of the first things that probably leaps to mind for us is castles. Those immense, strongly fortified structures that were the power bases of their day. Gunpowder would change all of that, as the shattering of the walls of Constantinople demonstrated.
Picture yourself in Constantinople, which was seen at the time as the ultimate metropolis, the ultimate object of desire; and the Ottoman Turks were determined to capture it. It is the year 1452. Orban the engineer, an artillery expert, is working in Constantinople and goes to Emperor Constantine XI and his armies to offer them his newest invention; a dreaded weapon, a monster cannon using gunpowder to protect the city from outside invaders. But the Emperor ran out of money and couldn’t buy it from him. So Orban goes to the Turks, who couldn’t realistically reject it, and, at a better price, offers it to them.
Jumping ahead, it is now Easter Monday, April 2, 1453, a year later. The young Ottoman sultan, Mehmet II, and his armies are in Constantinople to begin the siege of the city. The monstrous cannon, constructed by Orban the engineer, had to be hauled more than a hundred miles to the besieged city. The largest cannon ever, 27 feet long with the ability to shoot a 1,500-pound stone ball at the defenses of the beleaguered city, is now in position. With deafening thunder, the cannon fired. This weapon pounded the walls of Constantinople and eventually broke them down, allowing the Ottoman army to breach the city.
In addition to this monster, many other smaller cannons continued the bombardment. This was the sound of a military revolution, making stone walls, towers and battlements largely obsolete. It would devastate the certainties, traditions and way of life of the medieval age.
The city of Constantinople fell on May 29, 1453, eight weeks after the first siege. And the key to the Ottoman Turks conquering Constantinople was the cannon constructed by Orban the engineer, a professional artillery master.
“Keep your sword in front of you. Your swords and your shields are fully sufficient and will prove very effective in battle.” — What Emperor Constantine XI probably said during the final siege of Constantinople.
Those last words would have been a lie because they couldn’t defend themselves from the cannons unless they would have bought them the year prior to the siege. This is an important history lesson because the last innovation in power projection was nuclear weapons. We saw what they are capable of in Hiroshima and Nagasaki. If used, the outcome is mutually assured destruction of humanity. And the countries that have them became the new world superpowers that no one wants to attack because the cost of it may be irreparable. These countries are China, Russia and the world superpower hegemon, the U.S.. We have some other exceptions with nuclear weapons like North Korea, but they don’t have the influence of these three countries throughout the world.
Yet, another power projection technology arrived in 2009. Satoshi Nakamoto, inspired by Adam Back’s paper “Hashcash – A Denial Of Service Countermeasure”, built “Bitcoin: A peer-to-peer electronic cash system,” A network with a cost function that brings a challenge to its miners to be able to create tokens we call satoshis. By the proof-of-work mechanism, miners have to solve a challenge every 10 minutes to be able to validate Bitcoin transactions, and by doing so they receive bitcoin as a reward. Miners need to connect their specialized computers like Antminer’s S19 Pro in order to generate valid blocks.
This cost function has also a mathematical succession to impose a cost if someone wants to attack the network:
The Bitcoin halving formula.
When the Bitcoin network was released, miners started receiving 50 bitcoin per block, which was mined every 10 minutes. Every 210,000 blocks bitcoin rewards will be cut in half, which happens approximately every four years until we reach 32 halvings (”halving” is the term referring to the Bitcoin rewards cut by half), which is expected to happen in the year 2140. We are now in the third halving, during which miners are receiving 6.25 bitcoin per block.
If someone wants to attack the Bitcoin network, he or she would need to have a 51% majority of the hash rate. If, despite major roadblocks preventing such an event, a person does have this majority, the Bitcoin full nodes around the world would then have to validate and accept these new attacker blocks, which they are not incentivized to do so. Not to mention, this 51% attempt to attack the Bitcoin network would take approximately $6.7 billion per year.
The proof-of-work mechanism imposes a physical cost to any belligerent agent that wants to corrupt the network. Using electrical power via their computers, they are using electrical brute force physical power instead of kinetic one like the military’s gunpowder. This is a continuation of the power projection game but in cyberspace, now done by protecting our purely digital property and energy, which we call Bitcoin. Miners are a continuation of our military power.
What are the implications of this? Jason Lowery expresses it as follows and is making a great thesis called “Softwar: Bitcoin And The Future Of Our National Strategic Defense.”
Lowery illustrates here:
“We cannot forget how history plays out. We cannot forget that power is everything if we want to defend what we hold valuable. Hopefully, we can convince the people who are in charge of policy making. This is the goal of my research. They should at least take Bitcoin mining seriously because we don’t want to be like the end of Constantinople. We want to be the superpower of the future. If this is the power projection play, cyber. If this is how you achieve zero trust egalitarian control over cyber property, we want to posture this country to continue to be a superpower.”
The U.S. has become the world superpower through its military force and the use of its currency, the U.S. dollar, as the world reserve money in the world. They managed to secure this after getting out of the gold standard in 1971 and following that with the petrodollar system.
Why is this important?
After the U.S. sanctions against Russia removing them from the SWIFT system, now every country is asking themselves these questions:
“Can I trust my savings in the banking system?
…
If I go against the U.S., could I be thrown out of the SWIFT system as well?
…
How can we protect our property and sovereignty from the influence of this superpower?”
They do so by building their military kinetically and electrically so that they can impose a cost on any attacker that wants to inflict their rules.
The power projection game is a natural law that has existed for millions of years and is now evolving. Now, the U.S. has to make a smart move if it wants to maintain its role as the most powerful nation in the world.
This is a guest post by Jaime Gutierrez. Opinions expressed are entirely their own and do not necessarily reflect those of BTC Inc or Bitcoin Magazine.
Crypto
El Salvador Takes First Step To Issue Bitcoin Volcano Bonds
Published
2 years agoon
November 22, 2022
El Salvador’s Minister of the Economy Maria Luisa Hayem Brevé submitted a digital assets issuance bill to the country’s legislative assembly, paving the way for the launch of its bitcoin-backed “volcano” bonds.
First announced one year ago today, the pioneering initiative seeks to attract capital and investors to El Salvador. It was revealed at the time the plans to issue $1 billion in bonds on the Liquid Network, a federated Bitcoin sidechain, with the proceedings of the bonds being split between a $500 million direct allocation to bitcoin and an investment of the same amount in building out energy and bitcoin mining infrastructure in the region.
A sidechain is an independent blockchain that runs parallel to another blockchain, allowing for tokens from that blockchain to be used securely in the sidechain while abiding by a different set of rules, performance requirements, and security mechanisms. Liquid is a sidechain of Bitcoin that allows bitcoin to flow between the Liquid and Bitcoin networks with a two-way peg. A representation of bitcoin used in the Liquid network is referred to as L-BTC. Its verifiably equivalent amount of BTC is managed and secured by the network’s members, called functionaries.
“Digital securities law will enable El Salvador to be the financial center of central and south America,” wrote Paolo Ardoino, CTO of cryptocurrency exchange Bitfinex, on Twitter.
Bitfinex is set to be granted a license in order to be able to process and list the bond issuance in El Salvador.
The bonds will pay a 6.5% yield and enable fast-tracked citizenship for investors. The government will share half the additional gains with investors as a Bitcoin Dividend once the original $500 million has been monetized. These dividends will be dispersed annually using Blockstream’s asset management platform.
The act of submitting the bill, which was hinted at earlier this year, kickstarts the first major milestone before the bonds can see the light of day. The next is getting it approved, which is expected to happen before Christmas, a source close to President Nayib Bukele told Bitcoin Magazine. The bill was submitted on November 17 and presented to the country’s Congress today. It is embedded in full below.
Crypto
How I’ll Talk To Family Members About Bitcoin This Thanksgiving
Published
2 years agoon
November 22, 2022
This is an opinion editorial by Joakim Book, a Research Fellow at the American Institute for Economic Research, contributor and copy editor for Bitcoin Magazine and a writer on all things money and financial history.
I don’t.
That’s it. That’s the article.
In all sincerity, that is the full message: Just don’t do it. It’s not worth it.
You’re not an excited teenager anymore, in desperate need of bragging credits or trying out your newfound wisdom. You’re not a preaching priestess with lost souls to save right before some imminent arrival of the day of reckoning. We have time.
Instead: just leave people alone. Seriously. They came to Thanksgiving dinner to relax and rejoice with family, laugh, tell stories and zone out for a day — not to be ambushed with what to them will sound like a deranged rant in some obscure topic they couldn’t care less about. Even if it’s the monetary system, which nobody understands anyway.
Get real.
If you’re not convinced of this Dale Carnegie-esque social approach, and you still naively think that your meager words in between bites can change anybody’s view on anything, here are some more serious reasons for why you don’t talk to friends and family about Bitcoin the protocol — but most certainly not bitcoin, the asset:
- Your family and friends don’t want to hear it. Move on.
- For op-sec reasons, you don’t want to draw unnecessary attention to the fact that you probably have a decent bitcoin stack. Hopefully, family and close friends should be safe enough to confide in, but people talk and that gossip can only hurt you.
- People find bitcoin interesting only when they’re ready to; everyone gets the price they deserve. Like Gigi says in “21 Lessons:”
“Bitcoin will be understood by you as soon as you are ready, and I also believe that the first fractions of a bitcoin will find you as soon as you are ready to receive them. In essence, everyone will get ₿itcoin at exactly the right time.”
It’s highly unlikely that your uncle or mother-in-law just happens to be at that stage, just when you’re about to sit down for dinner.
- Unless you can claim youth, old age or extreme poverty, there are very few people who genuinely haven’t heard of bitcoin. That means your evangelizing wouldn’t be preaching to lost, ignorant souls ready to be saved but the tired, huddled and jaded masses who could care less about the discovery that will change their societies more than the internal combustion engine, internet and Big Government combined. Big deal.
- What is the case, however, is that everyone in your prospective audience has already had a couple of touchpoints and rejected bitcoin for this or that standard FUD. It’s a scam; seems weird; it’s dead; let’s trust the central bankers, who have our best interest at heart.
No amount of FUD busting changes that impression, because nobody holds uninformed and fringe convictions for rational reasons, reasons that can be flipped by your enthusiastic arguments in-between wiping off cranberry sauce and grabbing another turkey slice. - It really is bad form to talk about money — and bitcoin is the best money there is. Be classy.
Now, I’m not saying to never ever talk about Bitcoin. We love to talk Bitcoin — that’s why we go to meetups, join Twitter Spaces, write, code, run nodes, listen to podcasts, attend conferences. People there get something about this monetary rebellion and have opted in to be part of it. Your unsuspecting family members have not; ambushing them with the wonders of multisig, the magically fast Lightning transactions or how they too really need to get on this hype train, like, yesterday, is unlikely to go down well.
However, if in the post-dinner lull on the porch someone comes to you one-on-one, whisky in hand and of an inquisitive mind, that’s a very different story. That’s personal rather than public, and it’s without the time constraints that so usually trouble us. It involves clarifying questions or doubts for somebody who is both expressively curious about the topic and available for the talk. That’s rare — cherish it, and nurture it.
Last year I wrote something about the proper role of political conversations in social settings. Since November was also election month, it’s appropriate to cite here:
“Politics, I’m starting to believe, best belongs in the closet — rebranded and brought out for the specific occasion. Or perhaps the bedroom, with those you most trust, love, and respect. Not in public, not with strangers, not with friends, and most certainly not with other people in your community. Purge it from your being as much as you possibly could, and refuse to let political issues invade the areas of our lives that we cherish; politics and political disagreements don’t belong there, and our lives are too important to let them be ruled by (mostly contrived) political disagreements.”
If anything, those words seem more true today than they even did then. And I posit to you that the same applies for bitcoin.
Everyone has some sort of impression or opinion of bitcoin — and most of them are plain wrong. But there’s nothing people love more than a savior in white armor, riding in to dispel their errors about some thing they are freshly out of fucks for. Just like politics, nobody really cares.
Leave them alone. They will find bitcoin in their own time, just like all of us did.
This is a guest post by Joakim Book. Opinions expressed are entirely their own and do not necessarily reflect those of BTC Inc or Bitcoin Magazine.
This is an opinion editorial by Federico Tenga, a long time contributor to Bitcoin projects with experience as start-up founder, consultant and educator.
The term “smart contracts” predates the invention of the blockchain and Bitcoin itself. Its first mention is in a 1994 article by Nick Szabo, who defined smart contracts as a “computerized transaction protocol that executes the terms of a contract.” While by this definition Bitcoin, thanks to its scripting language, supported smart contracts from the very first block, the term was popularized only later by Ethereum promoters, who twisted the original definition as “code that is redundantly executed by all nodes in a global consensus network”
While delegating code execution to a global consensus network has advantages (e.g. it is easy to deploy unowed contracts, such as the popularly automated market makers), this design has one major flaw: lack of scalability (and privacy). If every node in a network must redundantly run the same code, the amount of code that can actually be executed without excessively increasing the cost of running a node (and thus preserving decentralization) remains scarce, meaning that only a small number of contracts can be executed.
But what if we could design a system where the terms of the contract are executed and validated only by the parties involved, rather than by all members of the network? Let us imagine the example of a company that wants to issue shares. Instead of publishing the issuance contract publicly on a global ledger and using that ledger to track all future transfers of ownership, it could simply issue the shares privately and pass to the buyers the right to further transfer them. Then, the right to transfer ownership can be passed on to each new owner as if it were an amendment to the original issuance contract. In this way, each owner can independently verify that the shares he or she received are genuine by reading the original contract and validating that all the history of amendments that moved the shares conform to the rules set forth in the original contract.
This is actually nothing new, it is indeed the same mechanism that was used to transfer property before public registers became popular. In the U.K., for example, it was not compulsory to register a property when its ownership was transferred until the ‘90s. This means that still today over 15% of land in England and Wales is unregistered. If you are buying an unregistered property, instead of checking on a registry if the seller is the true owner, you would have to verify an unbroken chain of ownership going back at least 15 years (a period considered long enough to assume that the seller has sufficient title to the property). In doing so, you must ensure that any transfer of ownership has been carried out correctly and that any mortgages used for previous transactions have been paid off in full. This model has the advantage of improved privacy over ownership, and you do not have to rely on the maintainer of the public land register. On the other hand, it makes the verification of the seller’s ownership much more complicated for the buyer.
How can the transfer of unregistered properties be improved? First of all, by making it a digitized process. If there is code that can be run by a computer to verify that all the history of ownership transfers is in compliance with the original contract rules, buying and selling becomes much faster and cheaper.
Secondly, to avoid the risk of the seller double-spending their asset, a system of proof of publication must be implemented. For example, we could implement a rule that every transfer of ownership must be committed on a predefined spot of a well-known newspaper (e.g. put the hash of the transfer of ownership in the upper-right corner of the first page of the New York Times). Since you cannot place the hash of a transfer in the same place twice, this prevents double-spending attempts. However, using a famous newspaper for this purpose has some disadvantages:
- You have to buy a lot of newspapers for the verification process. Not very practical.
- Each contract needs its own space in the newspaper. Not very scalable.
- The newspaper editor can easily censor or, even worse, simulate double-spending by putting a random hash in your slot, making any potential buyer of your asset think it has been sold before, and discouraging them from buying it. Not very trustless.
For these reasons, a better place to post proof of ownership transfers needs to be found. And what better option than the Bitcoin blockchain, an already established trusted public ledger with strong incentives to keep it censorship-resistant and decentralized?
If we use Bitcoin, we should not specify a fixed place in the block where the commitment to transfer ownership must occur (e.g. in the first transaction) because, just like with the editor of the New York Times, the miner could mess with it. A better approach is to place the commitment in a predefined Bitcoin transaction, more specifically in a transaction that originates from an unspent transaction output (UTXO) to which the ownership of the asset to be issued is linked. The link between an asset and a bitcoin UTXO can occur either in the contract that issues the asset or in a subsequent transfer of ownership, each time making the target UTXO the controller of the transferred asset. In this way, we have clearly defined where the obligation to transfer ownership should be (i.e in the Bitcoin transaction originating from a particular UTXO). Anyone running a Bitcoin node can independently verify the commitments and neither the miners nor any other entity are able to censor or interfere with the asset transfer in any way.
Since on the Bitcoin blockchain we only publish a commitment of an ownership transfer, not the content of the transfer itself, the seller needs a dedicated communication channel to provide the buyer with all the proofs that the ownership transfer is valid. This could be done in a number of ways, potentially even by printing out the proofs and shipping them with a carrier pigeon, which, while a bit impractical, would still do the job. But the best option to avoid the censorship and privacy violations is establish a direct peer-to-peer encrypted communication, which compared to the pigeons also has the advantage of being easy to integrate with a software to verify the proofs received from the counterparty.
This model just described for client-side validated contracts and ownership transfers is exactly what has been implemented with the RGB protocol. With RGB, it is possible to create a contract that defines rights, assigns them to one or more existing bitcoin UTXO and specifies how their ownership can be transferred. The contract can be created starting from a template, called a “schema,” in which the creator of the contract only adjusts the parameters and ownership rights, as is done with traditional legal contracts. Currently, there are two types of schemas in RGB: one for issuing fungible tokens (RGB20) and a second for issuing collectibles (RGB21), but in the future, more schemas can be developed by anyone in a permissionless fashion without requiring changes at the protocol level.
To use a more practical example, an issuer of fungible assets (e.g. company shares, stablecoins, etc.) can use the RGB20 schema template and create a contract defining how many tokens it will issue, the name of the asset and some additional metadata associated with it. It can then define which bitcoin UTXO has the right to transfer ownership of the created tokens and assign other rights to other UTXOs, such as the right to make a secondary issuance or to renominate the asset. Each client receiving tokens created by this contract will be able to verify the content of the Genesis contract and validate that any transfer of ownership in the history of the token received has complied with the rules set out therein.
So what can we do with RGB in practice today? First and foremost, it enables the issuance and the transfer of tokenized assets with better scalability and privacy compared to any existing alternative. On the privacy side, RGB benefits from the fact that all transfer-related data is kept client-side, so a blockchain observer cannot extract any information about the user’s financial activities (it is not even possible to distinguish a bitcoin transaction containing an RGB commitment from a regular one), moreover, the receiver shares with the sender only blinded UTXO (i. e. the hash of the concatenation between the UTXO in which she wish to receive the assets and a random number) instead of the UTXO itself, so it is not possible for the payer to monitor future activities of the receiver. To further increase the privacy of users, RGB also adopts the bulletproof cryptographic mechanism to hide the amounts in the history of asset transfers, so that even future owners of assets have an obfuscated view of the financial behavior of previous holders.
In terms of scalability, RGB offers some advantages as well. First of all, most of the data is kept off-chain, as the blockchain is only used as a commitment layer, reducing the fees that need to be paid and meaning that each client only validates the transfers it is interested in instead of all the activity of a global network. Since an RGB transfer still requires a Bitcoin transaction, the fee saving may seem minimal, but when you start introducing transaction batching they can quickly become massive. Indeed, it is possible to transfer all the tokens (or, more generally, “rights”) associated with a UTXO towards an arbitrary amount of recipients with a single commitment in a single bitcoin transaction. Let’s assume you are a service provider making payouts to several users at once. With RGB, you can commit in a single Bitcoin transaction thousands of transfers to thousands of users requesting different types of assets, making the marginal cost of each single payout absolutely negligible.
Another fee-saving mechanism for issuers of low value assets is that in RGB the issuance of an asset does not require paying fees. This happens because the creation of an issuance contract does not need to be committed on the blockchain. A contract simply defines to which already existing UTXO the newly issued assets will be allocated to. So if you are an artist interested in creating collectible tokens, you can issue as many as you want for free and then only pay the bitcoin transaction fee when a buyer shows up and requests the token to be assigned to their UTXO.
Furthermore, because RGB is built on top of bitcoin transactions, it is also compatible with the Lightning Network. While it is not yet implemented at the time of writing, it will be possible to create asset-specific Lightning channels and route payments through them, similar to how it works with normal Lightning transactions.
Conclusion
RGB is a groundbreaking innovation that opens up to new use cases using a completely new paradigm, but which tools are available to use it? If you want to experiment with the core of the technology itself, you should directly try out the RGB node. If you want to build applications on top of RGB without having to deep dive into the complexity of the protocol, you can use the rgb-lib library, which provides a simple interface for developers. If you just want to try to issue and transfer assets, you can play with Iris Wallet for Android, whose code is also open source on GitHub. If you just want to learn more about RGB you can check out this list of resources.
This is a guest post by Federico Tenga. Opinions expressed are entirely their own and do not necessarily reflect those of BTC Inc or Bitcoin Magazine.