Connect with us

Crypto

Bitcoin Mining Isn’t Wasteful — It Creates Abundance

Avatar photo

Published

on

Bitcoin Mining Isn’t Wasteful — It Creates Abundance

The mainstream media mistakenly portray bitcoin mining as wasteful. Nothing could be further from the truth. Bitcoin mining provides an economic bid for otherwise unusable, excess energy. Bitcoin will propel humanity to abundance.

“Bitcoin Mining isn’t wasteful” — an AI-generated image by DALL-E, OpenAI**

To discuss bitcoin mining, one must first understand how it works: Proof-of-Work and the difficulty adjustment.

How Bitcoin Mining Works

Bitcoin is a new type of money that uses a Proof-of-Work consensus mechanism to secure the network (SHA-256). The “work” is the computation that must be performed to solve the puzzle. Miners use computers specifically designed for bitcoin mining (ASICs) to compete against each other in a race to guess an extremely large number. Every 10 minutes on average, according to a Poisson distribution, the miner who first guesses a successful number gets to add a new block to the Bitcoin blockchain, earning the block reward. The block reward is made up of the deflationary block subsidy, which halves every four years or so, and transaction fees paid by users to incentivize their transactions to be added to the next block.

Proof of work is based on asymmetry. It’s exorbitantly expensive and difficult to generate the proof while remaining extremely cheap and easy to verify that proof. Miners must expend a great deal of energy to have any chance at solving the puzzle before an even faster competitor does. As of June 10, 2022, this cost comes to about $22,000 per BTC for miners in North America. At the same time, it’s practically free to verify that a block is valid, enabling all other network participants (full nodes) to quickly accept or reject a block proposed by a miner.

By itself, proof of work would not be sufficient to secure the Bitcoin network. Miners would quickly adapt by specializing in solving this one kind of puzzle, improving the efficiency of their miners (CPUs → GPUs → ASICs), increasing the number of miners and thus growing the overall hash rate by leaps and bounds. This competitive rush would result in ever briefer intervals between successive blocks, with bitcoin being issued at a rate far greater than was called for by the original supply schedule.

Satoshi Nakamoto solved this problem by implementing the difficulty adjustment, a remarkable example of algorithmic homeostasis. Over the long run, the difficulty adjustment ensures that new blocks are found, on average, every 10 minutes, readjusting itself each time that 2,016 additional blocks (two weeks) have passed. This clever Easter egg is a nod toward reversing the effect of Executive Order 6102.

When blocks are being mined too quickly (less than 10 minutes between blocks on average), as can often be the case due to increasing hash rate coming online, the puzzle becomes harder at the two-week checkpoint so as to slow the rate of mining. On the other hand, when blocks are being mined too slowly (more than 10 minutes between blocks on average), the puzzle becomes easier so as to accelerate mining back to the targeted equilibrium rate of 2,016 blocks per fortnight. At this pace, the designated halvings every 210,000 blocks take place at approximately four-year intervals.

Advertisement
Submit your 2022 Austin Neighborhood Feedback

Over the long run, this homeostatic feedback loop determining mining difficulty generally balances out any deviations from the planned rate of 2,016 new blocks per fortnight. However, when rapid increases in the total hash rate are more common than declines in the mining difficulty, this cumulative slight imbalance caused by Bitcoin’s exponential increase in mining power has led to block reward halvings that occur a few months sooner than expected. In practice, when the hash rate rapidly increases, the upward difficulty adjustment every two weeks isn’t nearly enough to fully counteract this trend of blocks arriving sooner than planned. This is ultimately why the first several Bitcoin halvings (November 28, 2012; July 9, 2016; and May 12, 2020) have been about three years and three seasons apart.

This elegant, self-correcting system ensures that the bitcoin supply schedule set by Satoshi Nakamoto at the beginning is followed, ultimately enforcing the 21 million cap with roughly quadrennial halvings of the block reward.

Bitcoin’s Energy Usage

Bitcoin provides a uniquely valuable product to humanity. It is the best money in existence. Bitcoin offers a deflationary store of value, light-speed medium of exchange and precise unit of account for the global economy. Bitcoin, when used with best security practices, protects an individual’s purchasing power and property rights from seizure, debasement, inflation, counterfeiting or other political abuses.

Historically, gold provided similar benefits to humanity. For generations, people have debated the merits and costs of the gold standard.

Satoshi Nakamato on the costs of bitcoin mining. Source: BitcoinTalkForums.

Bitcoin miners are able to convert watts of electrical power anywhere on the planet into money (BTC). This is mind-blowing and will radically change energy markets.

Bitcoin is an energy buyer of last resort. It is the only use case that will buy energy anywhere in the world, at any time, for any interval. Due to the competitive market of bitcoin mining, miners only prosper by using cheap power that has no other buyer ready and willing to bid a higher price for it. Using overly expensive power that’s also highly sought after by others or mining at a loss is self-defeating. This market system creates new opportunities, such as using wasted flared gas for Bitcoin mining to reduce CO2 emissions.

Bitcoin miners use energy that would otherwise be wasted or unprofitable to use. Large sources of energy, such as Hydro-Québec in Canada, often have an excess generative capacity that couldn’t be applied before Bitcoin. Now, thanks to bitcoin mining, these clean power resources have a direct way to monetize their excess power capacity. This lowers the cost of production for all power consumers as companies are able to earn the same or higher profit by serving more watts to consumers for the same or lower cost.

Wasting any power at all increases costs for everyone by lowering the demand curve below the available supply. In order to get the same rate of return, producers must increase prices to compensate for the resources wasted in developing sources of excess power capacity that aren’t always able to find a buyer.

Advertisement
Submit your 2022 Austin Neighborhood Feedback

For example, let’s imagine there is a rural hydro plant that has a fixed 5,000 megawatts available. The operators of the facility want to achieve a profitable return on the operation, as it costs a lot of money to build and maintain the plant. The consumers in the rural town are price inelastic, as they have no alternative sources of electric power and must resort to manual labor whenever electricity does not suffice. Currently, the town only uses 3,000 MW out of the 5,000 MW available. A bitcoin miner comes in and purchases the remaining 2,000 MW. The rural residents are no longer on the hook and are thus freed from having to subsidize excess power that they don’t even use. Now, the rural hydro plant is able to lower consumer prices for electrical power while earning the same rate of profit. A win-win for everyone.

Mining bitcoin today is profitable with low-cost energy on many national electricity grids. In the future, bitcoin mining will only be profitable at the margins where the net energy cost is close to zero or even negative: for example, using the waste heat for a boiler or food production.

Bitcoin miners stabilize the grid. Bitcoin miners are highly cost-sensitive. If they want to stay operating in profit, they must not compete with consumers and businesses for high-cost electrical power in areas where it is most scarce and highly valued by existing market participants. They will shut down during high-stress events instead of continuing to mine. As flexible buyers of power only when it is economical to do so, bitcoin miners are able to shut down quickly in response to upward fluctuations in electricity grid demand. This is unlike other large power users such as aluminum smelting, which takes 4–5 hours of uninterrupted power to shut down.

Recently, Texas’s power grid operator, ERCOT, asked Texans to conserve power due to ongoing heatwaves. Texas bitcoin miners responded by shutting off over 1,000 megawatts worth of bitcoin mining load, allowing for over 1% of total grid capacity to be pushed back to the grid.

Bitcoin miners encourage further investment in low-cost, stable baseload power. Energy usage is directly correlated with human flourishing and empowerment. Bitcoin miners are rapidly growing energy users seeking low-cost electric power globally. Bitcoin miners are directly responsible for bringing online new solar, wind and hydro plants around the world.

Conclusion

Bitcoin mining is good for the planet. It lowers energy costs for everyone, increases energy market efficiency, stabilizes grids and incentivizes humanity to rapidly scale energy production to abundance.

**The author generated this image with OpenAI’s DALL-E. Upon generation, the author reviewed and published the image and takes ultimate responsibility for the content of this image.

This is a guest post by Interstellar Bitcoin. Opinions expressed are entirely their own and do not necessarily reflect those of BTC Inc or Bitcoin Magazine.

Read More

Advertisement
Submit your 2022 Austin Neighborhood Feedback

Continue Reading
Advertisement
Click to comment

Crypto

El Salvador Takes First Step To Issue Bitcoin Volcano Bonds

Avatar photo

Published

on

El Salvador Takes First Step To Issue Bitcoin Volcano Bonds

El Salvador’s Minister of the Economy Maria Luisa Hayem Brevé submitted a digital assets issuance bill to the country’s legislative assembly, paving the way for the launch of its bitcoin-backed “volcano” bonds.

First announced one year ago today, the pioneering initiative seeks to attract capital and investors to El Salvador. It was revealed at the time the plans to issue $1 billion in bonds on the Liquid Network, a federated Bitcoin sidechain, with the proceedings of the bonds being split between a $500 million direct allocation to bitcoin and an investment of the same amount in building out energy and bitcoin mining infrastructure in the region.

A sidechain is an independent blockchain that runs parallel to another blockchain, allowing for tokens from that blockchain to be used securely in the sidechain while abiding by a different set of rules, performance requirements, and security mechanisms. Liquid is a sidechain of Bitcoin that allows bitcoin to flow between the Liquid and Bitcoin networks with a two-way peg. A representation of bitcoin used in the Liquid network is referred to as L-BTC. Its verifiably equivalent amount of BTC is managed and secured by the network’s members, called functionaries.

“Digital securities law will enable El Salvador to be the financial center of central and south America,” wrote Paolo Ardoino, CTO of cryptocurrency exchange Bitfinex, on Twitter.

Bitfinex is set to be granted a license in order to be able to process and list the bond issuance in El Salvador.

The bonds will pay a 6.5% yield and enable fast-tracked citizenship for investors. The government will share half the additional gains with investors as a Bitcoin Dividend once the original $500 million has been monetized. These dividends will be dispersed annually using Blockstream’s asset management platform.

The act of submitting the bill, which was hinted at earlier this year, kickstarts the first major milestone before the bonds can see the light of day. The next is getting it approved, which is expected to happen before Christmas, a source close to President Nayib Bukele told Bitcoin Magazine. The bill was submitted on November 17 and presented to the country’s Congress today. It is embedded in full below.

Read More

Advertisement
Submit your 2022 Austin Neighborhood Feedback

Continue Reading

Crypto

How I’ll Talk To Family Members About Bitcoin This Thanksgiving

Avatar photo

Published

on

How I’ll Talk To Family Members About Bitcoin This Thanksgiving

This is an opinion editorial by Joakim Book, a Research Fellow at the American Institute for Economic Research, contributor and copy editor for Bitcoin Magazine and a writer on all things money and financial history.

I don’t.

That’s it. That’s the article.


In all sincerity, that is the full message: Just don’t do it. It’s not worth it.

You’re not an excited teenager anymore, in desperate need of bragging credits or trying out your newfound wisdom. You’re not a preaching priestess with lost souls to save right before some imminent arrival of the day of reckoning. We have time.

Instead: just leave people alone. Seriously. They came to Thanksgiving dinner to relax and rejoice with family, laugh, tell stories and zone out for a day — not to be ambushed with what to them will sound like a deranged rant in some obscure topic they couldn’t care less about. Even if it’s the monetary system, which nobody understands anyway.

Get real.

If you’re not convinced of this Dale Carnegie-esque social approach, and you still naively think that your meager words in between bites can change anybody’s view on anything, here are some more serious reasons for why you don’t talk to friends and family about Bitcoin the protocol — but most certainly not bitcoin, the asset:

Advertisement
Submit your 2022 Austin Neighborhood Feedback
  • Your family and friends don’t want to hear it. Move on.
  • For op-sec reasons, you don’t want to draw unnecessary attention to the fact that you probably have a decent bitcoin stack. Hopefully, family and close friends should be safe enough to confide in, but people talk and that gossip can only hurt you.
  • People find bitcoin interesting only when they’re ready to; everyone gets the price they deserve. Like Gigi says in “21 Lessons:”

“Bitcoin will be understood by you as soon as you are ready, and I also believe that the first fractions of a bitcoin will find you as soon as you are ready to receive them. In essence, everyone will get ₿itcoin at exactly the right time.”

It’s highly unlikely that your uncle or mother-in-law just happens to be at that stage, just when you’re about to sit down for dinner.

  • Unless you can claim youth, old age or extreme poverty, there are very few people who genuinely haven’t heard of bitcoin. That means your evangelizing wouldn’t be preaching to lost, ignorant souls ready to be saved but the tired, huddled and jaded masses who could care less about the discovery that will change their societies more than the internal combustion engine, internet and Big Government combined. Big deal.
  • What is the case, however, is that everyone in your prospective audience has already had a couple of touchpoints and rejected bitcoin for this or that standard FUD. It’s a scam; seems weird; it’s dead; let’s trust the central bankers, who have our best interest at heart.
    No amount of FUD busting changes that impression, because nobody holds uninformed and fringe convictions for rational reasons, reasons that can be flipped by your enthusiastic arguments in-between wiping off cranberry sauce and grabbing another turkey slice.
  • It really is bad form to talk about money — and bitcoin is the best money there is. Be classy.

Now, I’m not saying to never ever talk about Bitcoin. We love to talk Bitcoin — that’s why we go to meetups, join Twitter Spaces, write, code, run nodes, listen to podcasts, attend conferences. People there get something about this monetary rebellion and have opted in to be part of it. Your unsuspecting family members have not; ambushing them with the wonders of multisig, the magically fast Lightning transactions or how they too really need to get on this hype train, like, yesterday, is unlikely to go down well.

However, if in the post-dinner lull on the porch someone comes to you one-on-one, whisky in hand and of an inquisitive mind, that’s a very different story. That’s personal rather than public, and it’s without the time constraints that so usually trouble us. It involves clarifying questions or doubts for somebody who is both expressively curious about the topic and available for the talk. That’s rare — cherish it, and nurture it.

Last year I wrote something about the proper role of political conversations in social settings. Since November was also election month, it’s appropriate to cite here:

“Politics, I’m starting to believe, best belongs in the closet — rebranded and brought out for the specific occasion. Or perhaps the bedroom, with those you most trust, love, and respect. Not in public, not with strangers, not with friends, and most certainly not with other people in your community. Purge it from your being as much as you possibly could, and refuse to let political issues invade the areas of our lives that we cherish; politics and political disagreements don’t belong there, and our lives are too important to let them be ruled by (mostly contrived) political disagreements.”

If anything, those words seem more true today than they even did then. And I posit to you that the same applies for bitcoin.

Everyone has some sort of impression or opinion of bitcoin — and most of them are plain wrong. But there’s nothing people love more than a savior in white armor, riding in to dispel their errors about some thing they are freshly out of fucks for. Just like politics, nobody really cares.

Leave them alone. They will find bitcoin in their own time, just like all of us did.

This is a guest post by Joakim Book. Opinions expressed are entirely their own and do not necessarily reflect those of BTC Inc or Bitcoin Magazine.

Read More

Advertisement
Submit your 2022 Austin Neighborhood Feedback
Continue Reading

Crypto

RGB Magic: Client-Side Contracts On Bitcoin

Avatar photo

Published

on

RGB Magic: Client-Side Contracts On Bitcoin

This is an opinion editorial by Federico Tenga, a long time contributor to Bitcoin projects with experience as start-up founder, consultant and educator.

The term “smart contracts” predates the invention of the blockchain and Bitcoin itself. Its first mention is in a 1994 article by Nick Szabo, who defined smart contracts as a “computerized transaction protocol that executes the terms of a contract.” While by this definition Bitcoin, thanks to its scripting language, supported smart contracts from the very first block, the term was popularized only later by Ethereum promoters, who twisted the original definition as “code that is redundantly executed by all nodes in a global consensus network”

While delegating code execution to a global consensus network has advantages (e.g. it is easy to deploy unowed contracts, such as the popularly automated market makers), this design has one major flaw: lack of scalability (and privacy). If every node in a network must redundantly run the same code, the amount of code that can actually be executed without excessively increasing the cost of running a node (and thus preserving decentralization) remains scarce, meaning that only a small number of contracts can be executed.

But what if we could design a system where the terms of the contract are executed and validated only by the parties involved, rather than by all members of the network? Let us imagine the example of a company that wants to issue shares. Instead of publishing the issuance contract publicly on a global ledger and using that ledger to track all future transfers of ownership, it could simply issue the shares privately and pass to the buyers the right to further transfer them. Then, the right to transfer ownership can be passed on to each new owner as if it were an amendment to the original issuance contract. In this way, each owner can independently verify that the shares he or she received are genuine by reading the original contract and validating that all the history of amendments that moved the shares conform to the rules set forth in the original contract.

This is actually nothing new, it is indeed the same mechanism that was used to transfer property before public registers became popular. In the U.K., for example, it was not compulsory to register a property when its ownership was transferred until the ‘90s. This means that still today over 15% of land in England and Wales is unregistered. If you are buying an unregistered property, instead of checking on a registry if the seller is the true owner, you would have to verify an unbroken chain of ownership going back at least 15 years (a period considered long enough to assume that the seller has sufficient title to the property). In doing so, you must ensure that any transfer of ownership has been carried out correctly and that any mortgages used for previous transactions have been paid off in full. This model has the advantage of improved privacy over ownership, and you do not have to rely on the maintainer of the public land register. On the other hand, it makes the verification of the seller’s ownership much more complicated for the buyer.

Title deed of unregistered real estate propriety

Source: Title deed of unregistered real estate propriety

How can the transfer of unregistered properties be improved? First of all, by making it a digitized process. If there is code that can be run by a computer to verify that all the history of ownership transfers is in compliance with the original contract rules, buying and selling becomes much faster and cheaper.

Secondly, to avoid the risk of the seller double-spending their asset, a system of proof of publication must be implemented. For example, we could implement a rule that every transfer of ownership must be committed on a predefined spot of a well-known newspaper (e.g. put the hash of the transfer of ownership in the upper-right corner of the first page of the New York Times). Since you cannot place the hash of a transfer in the same place twice, this prevents double-spending attempts. However, using a famous newspaper for this purpose has some disadvantages:

  1. You have to buy a lot of newspapers for the verification process. Not very practical.
  2. Each contract needs its own space in the newspaper. Not very scalable.
  3. The newspaper editor can easily censor or, even worse, simulate double-spending by putting a random hash in your slot, making any potential buyer of your asset think it has been sold before, and discouraging them from buying it. Not very trustless.

For these reasons, a better place to post proof of ownership transfers needs to be found. And what better option than the Bitcoin blockchain, an already established trusted public ledger with strong incentives to keep it censorship-resistant and decentralized?

If we use Bitcoin, we should not specify a fixed place in the block where the commitment to transfer ownership must occur (e.g. in the first transaction) because, just like with the editor of the New York Times, the miner could mess with it. A better approach is to place the commitment in a predefined Bitcoin transaction, more specifically in a transaction that originates from an unspent transaction output (UTXO) to which the ownership of the asset to be issued is linked. The link between an asset and a bitcoin UTXO can occur either in the contract that issues the asset or in a subsequent transfer of ownership, each time making the target UTXO the controller of the transferred asset. In this way, we have clearly defined where the obligation to transfer ownership should be (i.e in the Bitcoin transaction originating from a particular UTXO). Anyone running a Bitcoin node can independently verify the commitments and neither the miners nor any other entity are able to censor or interfere with the asset transfer in any way.

Advertisement
Submit your 2022 Austin Neighborhood Feedback
transfer of ownership of utxo

Since on the Bitcoin blockchain we only publish a commitment of an ownership transfer, not the content of the transfer itself, the seller needs a dedicated communication channel to provide the buyer with all the proofs that the ownership transfer is valid. This could be done in a number of ways, potentially even by printing out the proofs and shipping them with a carrier pigeon, which, while a bit impractical, would still do the job. But the best option to avoid the censorship and privacy violations is establish a direct peer-to-peer encrypted communication, which compared to the pigeons also has the advantage of being easy to integrate with a software to verify the proofs received from the counterparty.

This model just described for client-side validated contracts and ownership transfers is exactly what has been implemented with the RGB protocol. With RGB, it is possible to create a contract that defines rights, assigns them to one or more existing bitcoin UTXO and specifies how their ownership can be transferred. The contract can be created starting from a template, called a “schema,” in which the creator of the contract only adjusts the parameters and ownership rights, as is done with traditional legal contracts. Currently, there are two types of schemas in RGB: one for issuing fungible tokens (RGB20) and a second for issuing collectibles (RGB21), but in the future, more schemas can be developed by anyone in a permissionless fashion without requiring changes at the protocol level.

To use a more practical example, an issuer of fungible assets (e.g. company shares, stablecoins, etc.) can use the RGB20 schema template and create a contract defining how many tokens it will issue, the name of the asset and some additional metadata associated with it. It can then define which bitcoin UTXO has the right to transfer ownership of the created tokens and assign other rights to other UTXOs, such as the right to make a secondary issuance or to renominate the asset. Each client receiving tokens created by this contract will be able to verify the content of the Genesis contract and validate that any transfer of ownership in the history of the token received has complied with the rules set out therein.

So what can we do with RGB in practice today? First and foremost, it enables the issuance and the transfer of tokenized assets with better scalability and privacy compared to any existing alternative. On the privacy side, RGB benefits from the fact that all transfer-related data is kept client-side, so a blockchain observer cannot extract any information about the user’s financial activities (it is not even possible to distinguish a bitcoin transaction containing an RGB commitment from a regular one), moreover, the receiver shares with the sender only blinded UTXO (i. e. the hash of the concatenation between the UTXO in which she wish to receive the assets and a random number) instead of the UTXO itself, so it is not possible for the payer to monitor future activities of the receiver. To further increase the privacy of users, RGB also adopts the bulletproof cryptographic mechanism to hide the amounts in the history of asset transfers, so that even future owners of assets have an obfuscated view of the financial behavior of previous holders.

In terms of scalability, RGB offers some advantages as well. First of all, most of the data is kept off-chain, as the blockchain is only used as a commitment layer, reducing the fees that need to be paid and meaning that each client only validates the transfers it is interested in instead of all the activity of a global network. Since an RGB transfer still requires a Bitcoin transaction, the fee saving may seem minimal, but when you start introducing transaction batching they can quickly become massive. Indeed, it is possible to transfer all the tokens (or, more generally, “rights”) associated with a UTXO towards an arbitrary amount of recipients with a single commitment in a single bitcoin transaction. Let’s assume you are a service provider making payouts to several users at once. With RGB, you can commit in a single Bitcoin transaction thousands of transfers to thousands of users requesting different types of assets, making the marginal cost of each single payout absolutely negligible.

Another fee-saving mechanism for issuers of low value assets is that in RGB the issuance of an asset does not require paying fees. This happens because the creation of an issuance contract does not need to be committed on the blockchain. A contract simply defines to which already existing UTXO the newly issued assets will be allocated to. So if you are an artist interested in creating collectible tokens, you can issue as many as you want for free and then only pay the bitcoin transaction fee when a buyer shows up and requests the token to be assigned to their UTXO.

Furthermore, because RGB is built on top of bitcoin transactions, it is also compatible with the Lightning Network. While it is not yet implemented at the time of writing, it will be possible to create asset-specific Lightning channels and route payments through them, similar to how it works with normal Lightning transactions.

Conclusion

RGB is a groundbreaking innovation that opens up to new use cases using a completely new paradigm, but which tools are available to use it? If you want to experiment with the core of the technology itself, you should directly try out the RGB node. If you want to build applications on top of RGB without having to deep dive into the complexity of the protocol, you can use the rgb-lib library, which provides a simple interface for developers. If you just want to try to issue and transfer assets, you can play with Iris Wallet for Android, whose code is also open source on GitHub. If you just want to learn more about RGB you can check out this list of resources.

This is a guest post by Federico Tenga. Opinions expressed are entirely their own and do not necessarily reflect those of BTC Inc or Bitcoin Magazine.

Read More

Advertisement
Submit your 2022 Austin Neighborhood Feedback

Continue Reading